Ensemble of structure-adaptive self-organizing maps for high performance classification
نویسنده
چکیده
Combining multiple models has been recently exploited for the development of reliable neural networks. This paper introduces a structure-adaptive self-organizing map (SOM) which can adapt the structure as well as the weights, and presents a method to improve the performance by combining the multiple maps. The structure-adaptive SOM places the nodes of prototype vectors into the pattern space properly so as to make the decision boundaries as close to the class boundaries as possible. In order to show the performance of the proposed method, experiments with the unconstrained handwritten digit database of Concordia University in Canada have been conducted. Ó 2000 Elsevier Science Inc. All rights reserved.
منابع مشابه
Fusion of Structure Adaptive Self-organizing Maps Using Fuzzy Integral
Recently, many researchers attempt to develop an effective SOM-based pattern recognizer for high performance classification. Structure adaptive self-organizing map (SASOM) is a variant of SOM that is useful to pattern recognition and visualization. Fusion of classifiers can overcome the limitation of a single classifier by complementing each other. Fuzzy integral is a combination scheme that us...
متن کاملAn Ensemble of Adaptive Neuro-Fuzzy Kohonen Networks for Online Data Stream Fuzzy Clustering
A new approach to data stream clustering with the help of an ensemble of adaptive neuro-fuzzy systems is proposed. The proposed ensemble is formed with adaptive neuro-fuzzy self-organizing Kohonen maps in a parallel processing mode. Their learning procedure is carried out with different parameters that define a nature of cluster borders’ blurriness. Clusters’ quality is estimated in an online m...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 123 شماره
صفحات -
تاریخ انتشار 2000